Tanga bilan bog'liq
Narx kalkulyatori
Narxlar tarixi
Narx bashorati
Texnik tahlil
Tanga sotib olish bo'yicha qo'llanma
Kripto toifasi
Foyda kalkulyatori
Drift narxDRIFT
Ro'yxatga olingan
BuyKotirovka valyutasi:
USD
Bugun Drift haqida qanday fikrdasiz?
YaxshiYomon
Izoh: Ushbu ma'lumot faqat ma'lumot uchun.
Driftning bugungi narxi
Drift ning joriy narxi bugungi kunda (DRIFT / USD) uchun $1.2, joriy kapitallashuvi $328.47M USD. 24 soatlik savdo hajmi $30.87M USD. DRIFT dan USD gacha, narx real vaqtda yangilanadi. Drift oxirgi 24 soat ichida 4.06%. Muomaladagi hajm 273,751,900 .
DRIFTning eng yuqori narxi qancha?
DRIFT barcha vaqtlardagi eng yuqori ko'rsatkichga ega (ATH) $2.65 bo'lib, 2024-11-09 tomonidan qayd etilgan.
DRIFT ning eng past narxi qancha?
DRIFT barcha vaqtlardagi eng past ko'rsatkichga ega (ATL) $0.1000, 2024-05-16 da qayd etilgan.
Drift narx bashorati
Qachon DRIFTni sotib olish yaxshiroq? Hozir DRIFTni sotib olishim yoki sotishim kerakmi?
DRIFT sotib olish yoki sotish haqida qaror qabul qilayotganda, avvalo o'zingizning savdo strategiyangizni hisobga olishingiz kerak. Uzoq muddatli treyderlar va qisqa muddatli treyderlarning savdo faoliyati ham har xil bo'ladi. Bitget DRIFT texnik tahlili sizga savdo uchun ma'lumotnoma berishi mumkin.
DRIFT 4s texnik tahlil ga ko'ra, savdo signali Neytral.
DRIFT 1k texnik tahlil ga ko'ra, savdo signali Neytral.
DRIFT 1h texnik tahlil ga ko'ra, savdo signali Sotib olish.
2026 da DRIFT narxi qanday bo'ladi?
DRIFT tarixiy narx bajarilishini bashorat qilish modeli asosida DRIFT narxi 2026 da $1.15 ga yetishi prognoz qilinmoqda.
2031 da DRIFT narxi qanday bo'ladi?
2031 da DRIFT narxi +45.00% ga o'zgarishi kutilmoqda. 2031 oxiriga kelib, DRIFT narxi $2.66 ga yetishi prognoz qilinmoqda, jami ROI +131.21%.
Drift narx tarixi (USD)
Drift narxi o'tgan yil davomida +1098.94% ni tashkil qiladi. O'tgan yildagi DRIFTning USD dagi eng yuqori narxi $2.65 va o'tgan yildagi DRIFTning USD dagi eng past narxi $0.1000 edi.
VaqtNarx o'zgarishi (%)Eng past narxEng yuqori narx
24h+4.06%$1.13$1.2
7d-14.01%$1.11$1.47
30d-7.86%$0.8791$1.54
90d+143.55%$0.3822$2.65
1y+1098.94%$0.1000$2.65
Hamma vaqt+1098.94%$0.1000(2024-05-16, 241 kun oldin )$2.65(2024-11-09, 64 kun oldin )
Drift bozor ma’lumotlari
Driftning bozor qiymati tarixi
Bozor kapitali
$328,466,704.47
+4.06%
To’liq suyultirilgan bozor kapitali
$1,199,870,066.19
+4.06%
Hajm (24s)
$30,874,076.21
-32.97%
Bozor reytinglari
Aylanma tezligi
27.00%
24s hajm / bozor qiymati
9.39%
Aylanma ta'minot
273,751,900 DRIFT
Jami ta’minot / Maksimal ta’minot
1,000,000,000 DRIFT
-- DRIFT
Drift bozor
Drift kontsentratsiya bo'yicha xoldinglar
Kitlar
Investorlar
Chakana savdo
Saqlash vaqti bo'yicha Drift manzil
Xolderlar
Kruizerlar
Treyderlar
Jonli coinInfo.name (12) narx grafigi
Drift reyting
Jamiyatning o'rtacha baholari
4.6
Ushbu kontent faqat ma'lumot olish uchun mo'ljallangan.
DRIFT mahalliy valyutaga
1 DRIFT dan MXN$24.861 DRIFT dan GTQQ9.31 DRIFT dan CLP$1,211.21 DRIFT dan HNLL30.651 DRIFT dan UGXSh4,455.991 DRIFT dan ZARR22.931 DRIFT dan TNDد.ت3.871 DRIFT dan IQDع.د1,578.731 DRIFT dan TWDNT$39.731 DRIFT dan RSDдин.1371 DRIFT dan DOP$73.61 DRIFT dan MYRRM5.41 DRIFT dan GEL₾3.391 DRIFT dan UYU$52.431 DRIFT dan MADد.م.12.111 DRIFT dan AZN₼2.041 DRIFT dan OMRر.ع.0.461 DRIFT dan SEKkr13.461 DRIFT dan KESSh155.31 DRIFT dan UAH₴50.97
- 1
- 2
- 3
- 4
- 5
Oxirgi yangilanish: 2025-01-11 21:50:16(UTC+0)
Drift(DRIFT) qanday sotib olinadi
Bepul Bitget hisobingizni yarating
Bitgetda elektron pochta manzilingiz/mobil telefon raqamingiz bilan ro'yxatdan o'ting va hisobingizni himoya qilish uchun kuchli parol yarating.
Hisobingizni tasdiqlang
Shaxsiy ma'lumotlaringizni to'ldirib va haqiqiy fotosuratli shaxsni tasdiqlovchi hujjatni yuklab, shaxsingizni tasdiqlang.
Drift (DRIFT) sotib oling
Bitget orqali Drift xarid qilish uchun turli to'lov variantlaridan foydalaning. Buni qanday qilishni sizga ko'rsatamiz.
Batafsil ma'lumotDRIFT doimiy fyuchers bilan savdo qiling
Bitgetda muvaffaqiyatli ro'yxatdan o'tib, USDT yoki DRIFT tokenlarni xarid qilganingizdan so'ng, daromadingizni oshirish uchun derivativlar, jumladan, DRIFT fyuchers va marja savdosi bilan savdo qilishni boshlashingiz mumkin.
DRIFT ning joriy narxi $1.2, 24 soatlik narx o'zgarishi bilan +4.06%. Treyderlar uzoq yoki qisqa muddatliDRIFT fyucherslardan foyda olishlari mumkin.
Elita treyderlarini kuzatib borish orqali DRIFT nusxasi savdosiga qo'shiling.
Bitgetda ro'yxatdan o'tganingizdan va USDT yoki DRIFT tokenlarini muvaffaqiyatli sotib olganingizdan so'ng, siz elita treyderlarini kuzatib, nusxa savdosini ham boshlashingiz mumkin.
Drift yangiliklar
DRIFT 2 USDT dan oshdi, 24 soatlik o'sish 332% ni tashkil etdi
Bitget•2024-11-09 03:17
Drift Protokol Tokeni DRIFT $0.65 dan oshib, rekord darajaga yetdi
Bitget•2024-09-12 19:18
Drift Protokol Tokeni DRIFT $0.65 ni buzib, rekord darajaga yetdi, 24 soatda 18.6% ga oshdi
Bitget•2024-09-12 19:16
Bitgetda yangi listinglar
Yangi listinglar
Ko'proq sotib oling
SAVOL-JAVOBLAR
Drift ning hozirgi narxi qancha?
Driftning jonli narxi (DRIFT/USD) uchun $1.2, joriy bozor qiymati $328,466,704.47 USD. Kripto bozorida 24/7 doimiy faoliyat tufayli Drift qiymati tez-tez o'zgarib turadi. Driftning real vaqtdagi joriy narxi va uning tarixiy maʼlumotlari Bitget’da mavjud.
Drift ning 24 soatlik savdo hajmi qancha?
Oxirgi 24 soat ichida Drift savdo hajmi $30.87M.
Driftning eng yuqori koʻrsatkichi qancha?
Driftning eng yuqori ko‘rsatkichi $2.65. Bu Drift ishga tushirilgandan beri eng yuqori narx hisoblanadi.
Bitget orqali Drift sotib olsam bo'ladimi?
Ha, Drift hozirda Bitget markazlashtirilgan birjasida mavjud. Batafsil koʻrsatmalar uchun foydali Drift protocol qanday sotib olinadi qoʻllanmamizni koʻrib chiqing.
Drift ga sarmoya kiritish orqali barqaror daromad olsam bo'ladimi?
Albatta, Bitget savdolaringizni avtomatlashtirish va daromad olish uchun aqlli savdo botlari bilan strategik savdo platformasi ni taqdim etadi.
Eng past toʻlov bilan Drift ni qayerdan sotib olsam boʻladi?
strategik savdo platformasi endi Bitget birjasida mavjud ekanligini ma’lum qilishdan mamnunmiz. Bitget treyderlar uchun foydali investitsiyalarni ta'minlash uchun sanoatning yetakchi savdo to'lovlari va tubanligini taklif qiladi.
Drift (DRIFT) ni qayerdan sotib olsam bo'ladi?
Video bo'limi — tezkor tekshiruv, tezkor savdo
Bitgetda shaxsni tasdqilashni qanday yakunlash va o'zingizni firibgarlikdan himoya qilish kerak
1. Bitget hisobingizga kiring.
2. Agar siz Bitgetda yangi bo'lsangiz, hisob yaratish bo'yicha o'quv qo'llanmamizni tomosha qiling.
3. Profilingiz belgisiga kursorni olib keling, "Tasdiqlanmagan" tugmasini bosing va "Tasdiqlash" tugmasini bosing.
4. Chiqaruvchi mamlakat yoki mintaqa va ID turini tanlang va ko'rsatmalarga amal qiling.
5. O'zingizning xohishingizga ko'ra "Mobil tekshiruv" yoki "Kompyuter" ni tanlang.
6. Ma'lumotlaringizni kiriting, shaxsingizni tasdiqlovchi hujjat nusxasini yuboring va selfi oling.
7. Arizangizni yuboring va bo'ldi, siz shaxsingizni tasdiqlashni tugatdingiz!
Kriptovalyutalarga sarmoya kiritish, jumladan Bitgetda onlayn Drift xarid qilish xavflarni o‘z ichiga oladi. Bitget Drift sotib olishning oson va qulay usullarini taklif etadi va birjada ko'rsatilgan kriptovalyuta haqida to'liq ma'lumot berishga harakat qiladi. Biroq, biz Drift xaridingizdan kelib chiqadigan natijalar uchun javobgar emasmiz. Taqdim etilgan barcha ma'lumotlar xarid uchun tavsiya etilmaydi.
Bitget Insaytlari
BGUSER-SX0MCXKN
2K
Maitland of Al
The term "Maitland" is not a widely recognized term in the field of Artificial Intelligence (AI). However, I can provide some information on the concept of "maintland" or "maintenance land" in the context of AI.
In AI, maintenance land refers to the process of maintaining and updating AI systems to ensure they continue to function effectively and efficiently over time. This can include tasks such as:
1. _Data maintenance_: Ensuring that the data used to train and test AI models is accurate, complete, and up-to-date.
2. _Model maintenance_: Updating AI models to reflect changes in the underlying data or to improve their performance.
3. _Software maintenance_: Ensuring that the software used to deploy and manage AI systems is up-to-date and secure.
4. _Hardware maintenance_: Ensuring that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system.
Importance of Maitland in AI
The concept of maitland is important in AI because it ensures that AI systems continue to function effectively and efficiently over time. This can help to:
1. _Improve performance_: Regular maintenance can help to improve the performance of AI systems by ensuring that they are using the most up-to-date data and models.
2. _Reduce errors_: Maintenance can help to reduce errors and improve the accuracy of AI systems by ensuring that they are functioning correctly.
3. _Enhance security_: Maintenance can help to enhance the security of AI systems by ensuring that they are protected from cyber threats and that any vulnerabilities are patched.
4. _Increase trust_: Maintenance can help to increase trust in AI systems by ensuring that they are transparent, explainable, and fair.
Challenges of Maitland in AI
The challenges of maitland in AI include:
1. _Data quality_: Ensuring that the data used to train and test AI models is accurate, complete, and up-to-date can be a challenge.
2. _Model drift_: AI models can drift over time, which can affect their performance and accuracy.
3. _Software updates_: Ensuring that the software used to deploy and manage AI systems is up-to-date and secure can be a challenge.
4. _Hardware maintenance_: Ensuring that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system can be a challenge.
Best Practices for Maitland in AI
The best practices for maitland in AI include:
1. _Regular maintenance_: Regular maintenance is essential to ensure that AI systems continue to function effectively and efficiently over time.
2. _Data quality checks_: Data quality checks should be performed regularly to ensure that the data used to train and test AI models is accurate, complete, and up-to-date.
3. _Model monitoring_: AI models should be monitored regularly to ensure that they are performing as expected and to detect any drift or degradation.
4. _Software updates_: Software updates should be performed regularly to ensure that the software used to deploy and manage AI systems is up-to-date and secure.
5. _Hardware maintenance_: Hardware maintenance should be performed regularly to ensure that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system.$AL
AL0.00%
CYBER0.00%
Crypto-Paris
2024/12/27 14:52
Deploying und Überwachung von Machine-Learning-Modellen
Deploying
1. Integrieren des Modells in den
Deploying und Überwachung von Machine-Learning-Modellen
Deploying
1. Integrieren des Modells in den Workflow
2. Bereitstellung der Ergebnisse für Benutzer/Entwickler
3. Konfiguration der Modellumgebung
Überwachung
1. *Modellleistung*: Überwachen von Genauigkeit und Leistung
2. *Data-Drift*: Erkennen von Datenveränderungen
3. *Modell-Degradation*: Überwachen der Modellleistung über die Zeit
4. *Benutzerfeedback*: Sammeln von Feedback für Verbesserungen
Erfolgskriterien
1. *Modellleistung*: Erforderliche Genauigkeit und Leistung erreicht
2. *Benutzerzufriedenheit*: Benutzer zufrieden mit Ergebnissen
3. *Stabilität*: Modell bleibt stabil und funktioniert ordnungsgemäß
Tools für Deploying und Überwachung
1. TensorFlow Serving
2. AWS SageMaker
3. Azure Machine Learning
4. Google Cloud AI Platform
5. Prometheus und Grafana für Überwachung
Best Practices
1. Kontinuierliche Integration und -lieferung
2. Automatisierte Tests
3. regelmäßige Überwachung und Analyse
4. Dokumentation und Kommunikation
5. kontinuierliche Verbesserung und Optimierung
CLOUD0.00%
DRIFT0.00%
Kylian-mbappe
2024/12/27 14:25
Deploying und Überwachung von Machine-Learning-Modellen
Deploying
Das Deploying ist der letzte Schr
Deploying und Überwachung von Machine-Learning-Modellen
Deploying
Das Deploying ist der letzte Schritt eines Data-Analytics-Projekts. Hier werden die Machine-Learning-Modelle in den tatsächlichen Workflow integriert und die Ergebnisse für Benutzer oder Entwickler zugänglich gemacht.
Überwachung
Nach dem Deploying wird die Leistung des Modells überwacht, um Veränderungen wie Data-Drift oder Modell-Degradation zu erkennen. Wenn alles ordnungsgemäß funktioniert, kann das Projekt als erfolgreich betrachtet werden.
Schritte der Überwachung
1. *Modellleistung*: Überwachen der Modellleistung und -genauigkeit.
2. *Data-Drift*: Erkennen von Veränderungen in den Daten, die das Modell beeinflussen könnten.
3. *Modell-Degradation*: Überwachen der Modellleistung über die Zeit, um Degradation zu erkennen.
4. *Benutzerfeedback*: Sammeln von Feedback von Benutzern, um das Modell zu verbessern.
Erfolgskriterien
1. *Modellleistung*: Das Modell erreicht die erforderliche Genauigkeit und Leistung.
2. *Benutzerzufriedenheit*: Die Benutzer sind mit den Ergebnissen des Modells zufrieden.
3. *Stabilität*: Das Modell bleibt stabil und funktioniert ordnungsgemäß über die Zeit.
DRIFT0.00%
Sanam_Baloch
2024/12/27 14:07
The final stage of a data analytics project: deployment and monitoring. This is where the rubber meets the road, and the machine learning models are put into action.
During this stage, the analysts integrate the models into the actual workflow, making the outcomes available to users or developers. This is a critical step, as it ensures that the insights and predictions generated by the models are actionable and can drive business decisions.
Once the model is deployed, the analysts closely monitor its performance, watching for any changes that could impact its accuracy or effectiveness. This includes:
1. *Data drift*: Changes in the underlying data distribution that could affect the model's performance.
2. *Model degradation*: Decreases in the model's accuracy or performance over time.
3. *Concept drift*: Changes in the underlying relationships between variables that could impact the model's performance.
By monitoring the model's performance and addressing any issues that arise, the analysts can ensure that the project remains successful and continues to deliver value to the organization.
Some key activities during this stage include:
1. *Model serving*: Deploying the model in a production-ready environment.
2. *Monitoring and logging*: Tracking the model's performance and logging any issues or errors.
3. *Model maintenance*: Updating or retraining the model as needed to maintain its performance.
4. *Feedback loops*: Establishing processes to collect feedback from users or stakeholders and incorporating it into the model's development.
By following these steps, analysts can ensure that their data analytics project is not only successful but also sustainable and adaptable to changing business needs.
DRIFT0.00%
BGUSER-AEJ9PSGU
2024/12/27 13:58
Model Deployment and Monitoring
This is the last stage of a data analytics project. Here, analysts put the machine learning models into the actual workflow and make the outcomes available to users or developers. Once the model is deployed, they observe its performance for changes, like data drift, model degradation, etc. If everything appears operational, the project can be deemed successful.
DRIFT0.00%
Shunga o'xshash aktivlar
Mashhur kriptovalyutalar
Bozor kapitali bo'yicha eng yaxshi 8 kriptovalyuta tanlovi.
Yaqinda qo’shildi
Eng so’nggi qo’shilgan kriptovalyutalar.
Taqqoslanadigan bozor kapitali
Bitget aktivlari orasida ushbu 8 tasi bozor qiymati bo'yicha Drift ga eng yaqin hisoblanadi.